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Abstract:

This paper describes a neural model of interval timing, which reproduces the duration discrimination

experiments of Wearden (1992).

The model comprises 3 layers of neural units. The units in the first layer represent clusters of

neurons with probabilistic internal feedback that maintains self-sustained (short-term memory) activity

for a random time. The unit in the second layer is a spiking neuron that fires as long as a sufficient

number of input clusters are active. The unit in the third layer detects the offset of firing in the previous

layer by producing a short burst of spikes.

Analysis and simulation of the model shows spikes produced at random times with a

distribution determined by the number of units in the first layer, their survival time constant, and the

threshold of the unit in layer 2. Interval times can be learned with any of these parameters but lead to

different Weber law relations. A variable threshold in layer 2 predicts S-shaped Weber curves, a

variable number of units in layer 1 leads to a saturation of the Weber curve (decreasing Weber fraction)

and a variable time constant in layer 1 causes a linear Weber curve.

1. Introduction.

Timing is a important function of biological systems. There are two forms of timing: phase timing and

interval timing. Phase timing is the ability to time-mark events within seasonal or circadian cycles and is

not discussed in this paper. Interval timing is the ability to predict when an expected event is to occur

after some event or action. Car drivers can predict when a given red light becomes green. Interval timing

also allows to detect unexpected events or the non-occurrence of expected events. Parachute users know

exactly how much time it takes for a parachute to open.

Animal interval timing capabilities are tested in classical conditioning or reinforcement

experiments using intervals of up to 10 minutes. For instance, pigeons can be trained to jump on a

perch, stay there for a given time and then to jump off (Jasselette, Lejeune and Wearden, 1990). In
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humans, temporal duration discrimination tasks (Wearden, 1992) or temporal order recognition tasks

are used (Milner, Corsi & Leonard, 1991). Intervals are generally smaller than a second to prevent the

use of counting strategies.

The biological substrate of interval timing is still not well understood. A large number of

experimental data are reviewed in Gibbon, Malapani, Dale and Gallistel (1997) and these point to the

involvement of almost every brain area including hippocampus, cerebellum, basal ganglia, cortex and

frontal cortex.

An important characteristic of interval timing is its stochastic nature. For instance, pigeons stay

on the perch on average during the reinforced time. However, actual perching times in individual trials

can be shorter or longer. The distribution of perching times is usually centred on the reinforced time

interval with a width following a Weber law, i.e. the width is a linear function of the average time.

Current neural models of timing either model average responses of subjects, not the stochastic

nature of the biological timing (Grossberg and Merril, 1992, 1996) or contain a noise term without clear

biological basis (Miall, 1996; Church and Broadbent, 1990).

In section 2 of this paper a low level model of a timing mechanism is proposed which is

compatible with biological hardware and has an intrinsic stochasticity caused by probabilistic

transmission at synapses. In section 3, the relation between Weber law properties of the model and the

parameters that are adjusted during time interval learning is analysed. A linear relation is only one of

the possibilities. In section 4 an anatomically distributed timing network is proposed and used for the

reproduction of experimental data from temporal duration discrimination tasks (Wearden, 1992). In

section 5, properties of the model and future work are discussed.
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2. Neural Network Model

Figure 1.  3-layer timing neural network. The m units in the first layer are clusters of neurons with

probabilistic self-sustained activity. The unit in the second layer is a threshold spiking neuron that fires

as long as  the number of active input clusters exceeds a threshold n. The unit in the third layer (Offset

Detector) detects the offset of the firing in the previous layer and responds to it by producing a short

burst of spikes (a neural circuit with this function was described in Bugmann (1997)).

2.1 Modelling self-sustained clusters in layer 1.

Persistent firing activity is a form of temporary information storage used in many parts of the brain.

The pre-frontal cortex is a well known example (Fuster, 1980) but many other parts of the cortex have

the capability of storing information in that way. Cortical neurons are imbedded in an excitatory

network that can produce prolonged firing if inhibition is removed (Douglas and Martin, 1991) or, in

the worst cased, epileptic seizure (Tasker, Peacock and Dudek, 1992).

The behaviour of clusters of neurons with probabilistic excitatory connections between neurons has

been simulated in (Bugmann, 1997). As some input spikes fail to produce EPSPs, there is always a

moment when a catastrophic series of transmission failures prevents the self-sustained activity from

continuing. As shown in Figure 2, the probability of finding the cluster in an active state after all inputs

are silenced, is a roughly exponentially decaying function. This is similar to the one obtained by a single

neuron with probabilistic self-feedback (curve a, figure 3).
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Figure 2. Thick line: Probability of finding a 100

neurons cluster in an active state. At time 100 ms

the input is removed. The plateau lasting until t =

300 ms reflects a minimum time taken for the

activity to decay to 5% of active neurons (the

threshold used for defining the active self-sustained

mode). Fine line:  The natural logarithm of the

thick line (times 0.125). The linear portion

corresponds to a decay time constant of 4 seconds.

Parameters: The same network is used as in figure

5 of Bugmann (1997). Neurons within the cluster

are connected to 10% of the other neurons. The

synaptic transmission probability is 0.5. The

EPSCs are short alpha functions with a maximum

at 1 ms of amplitude 1.775 (a.u.). The curves

shown depend critically on the seed used for

randomly interconnecting neurons.

The decay time constant of the sustained firing depends on many parameters, such as the connectivity,

size and duration of EPSPs, and synaptic transmission probability. There has been no systematic

investigation of the influence of these parameters. There are initial indications that long decay times

(over 1 second) are very sensitive to parameter values and may not be a stable property of such

networks.

In the remaining parts of the paper a cluster will be modelled as a single unit with a self-feedback

connection having a probability α of transmitting the spike and causing another output spike. The

probability P(t) of finding that unit in an active state after k feedback loops (of duration ∆t each) is

given by:
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The probability of finding the self-feedback unit in a active state decreases exponentially with time after

the initiation of the activity (curve a, figure 3). In the next sections we will see how units with such

properties can be used to design a timer. The question of how realistic they are will be reconsidered

later, once it has been shown that the net can usefully emulate biological timers.
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2.2 Integrating self-sustained clusters in layer 2.

By feeding m self-feedback units into a threshold unit Th (figure 1), a short-term memory can be built

that stays active as long as the number of active inputs exceeds the threshold n. (curve b, figure 3). The

probability M(m,n,t) of finding the threshold unit in an active state is given by Bugmann and Taylor

(1997):

M m n t P i t
i n

m
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=
∑      (2)

where P(i,t) is the probability that the number of active units has decayed to exactly i at time t:
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2.3 Detecting the offset of the threshold unit in layer 3.

By detecting the end of the short-term memory activity with a unit that produces a burst of spikes

(Bugmann, 1997), a stochastic timer can be built that has a distribution of firing times given by P(n,t)

(curve c, figure 3).

Figure 3. Examples of firing probabilities in the three

layers of the network in figure 1. Curve a: Probability of

finding a probabilistic self-feedback unit in layer 1 in an

active state. Curve b: Probability of finding the unit in

layer 2 in an active state. Curve c: Probability of the unit in

layer 3 producing a spike.

The most probable firing time of the timer is tmax given by the maximum of P(n,t):

t m
nmax ln( )= τ    (4)

The most probable firing time is determined by three parameters: The number of self-feedback units m,

the threshold n of the integrating unit T and the decay time constant τ of the self-feedback units. The

value of ln(m/n) can be much smaller or much larger than 1, hence the most probable firing time can be

smaller or larger than the decay time of the self-feedback units, as illustrated in figure 4. This makes the

model very flexible.
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The width of the distribution of firing times is determined by the same three parameters τ, m

and n. As a rule of thumb, the larger the ratio m/n, the narrower the distribution and the more precise

the timer as illustrated in Bugmann and Taylor (1997).

Figure 4. Distribution of firing times of a timer

with a fixed threshold n=5 in layer 2 and a

variable number m of units in layer 1. The

decay time of units in layer 1 is τ = 50. We

may note the similitude between these curves

and the spectral functions postulated in

Grossberg and Merrill (1992). Figure reprinted

with permission from Bugmann and Taylor

(1997).

3. Weber fraction

3.1 Weber law

In most timing experiments, the width σ of the distribution of timed response is a linear function of the

average time tav as given by following equation known as the generalised Weber law (Jasselette, Lejeune

and Wearden, 1990):

σ = ⋅ +c t dav
   (5)

If the distribution is Gaussian, the width σ is the standard deviation and tav = tmax. In our model, the

distribution is not Gaussian (as illustrated in figure 4) although it may become close to a Gaussian for

large values of m. In this section, the value of σ is approximated by the width at half height of the

distribution (3).

3.2 Weber fraction and time interval learning

If a subject used our network model to learn time intervals, he would have the option to modify either m,

n, or τ to adjust its internal timer. Modifying m means connecting or disconnecting new units into the

threshold neuron, or using all-or-none modifiable weights. Modifying n means changing uniformly the

weights from an unchanged number of units. Modifying τ means modifying some internal property in a

cluster, represented by the transmission probability in the feedback connection of the model unit.
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Numerical estimations using (3) and coarse theoretical analysis show that the relation between the width

of the distribution and the average time depends on the variable parameter that is used to set the average

time. Figure 5 shows a linear Weber relation when τ is learnt, a slightly S-shaped curve when n is learnt

and a saturating curve when m is the variable. Usually, straight lines are fitted to experimental data. It

may be worth looking at these more closely, as they may give a hint about the parameter that is being

modified during learning. However, more precise theoretical analysis is required to produce an

analytical expression to adjust to experimental curves.

Figure 5. Width of the distribution of firing times

of the timer against the average firing time. Both

values were calculated using (3) for m variable, n

variable or τ variable. The two fixed parameters

were m = 70, n =15, τ = 0.5 sec. The average firing

time has been obtained from numerical integration

of equation (3).

4. Modelling Interval Discrimination Experiments

The model has been used to reproduce the stochastic behaviour of subjects in a number of experiments

(Bugmann and Bapi, submitted):  1) Using only the two first layers, the decay of the working memory

retention performance observed in monkeys by Fuster et al. (1981) could be reproduced with a threshold

unit receiving inputs from 3 units in layer 1. These units had a decay time constant of approximately 76

seconds. 2) Using only the first layer, the recency discrimination data of Milner et al. (1991) could be

reproduced using a single-unit with decay time of 60 seconds as short-term memory.

In this section it is shown how the full 3-layer model can reproduce the duration discrimination task

data of Wearden (1992). This will require over 50 input units with decay times of the order of 500 ms.

This time constant is much smaller that those mentioned above, which are probably characteristic of

self-sustained activity in the prefrontal cortex.

7



To appear in Biosystem 1998

In the form of duration discrimination task which is modeled here, subjects are presented with a tone of

standard duration of either 500 ms, 600 ms or 700 ms (Wearden, 1992). Subjects then listen to test

tones of various durations and determine if their duration is equal to the standard. The fractions of "yes"

responses for each standard duration are shown in figure 6. It can be seen that subjects sometimes

believe that a tone lasting 800 ms is lasting 500 ms. How can this be explained ?

    

Figure 6. Square symbols: Probability that a subject judges a tone of the indicated duration as equal to

the standard of 500 ms (left figure), 600 ms (middle figure) and 700 ms (right figure). Bell shaped full

line: Best fit by our model. Exponentially decaying full line: Behaviour of an input unit with the best

fit parameters. Dotted line: Behaviour of the threshold unit with the best fit parameters (given in table

2).

A standard model used by Wearden (1992) to fit his data assumes that the subject replies "yes" if the

difference between a noisy version of the standard s* and the test tone t is smaller than a threshold b.t

proportional to the duration of the test tone (equation 6)

| t - s* | < b.t      (6)

This is a purely phenomenological approach. In figure 7, a neural network model is proposed that has a

function similar to (6), except for a constant threshold as justified below. In this model it is assumed

that the onset of the test tone initiates a self-sustained firing activity in a number of independent clusters

probably located in a sensory area of the cortex. During learning (modelling of which is not attempted

here) the output of these clusters is adequately connected to a threshold unit and an offset detector, both

possibly located in a frontal area of the cortex. The output of this timer activates a neuron in a motor

area which initiates the behavioural response.
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Figure 7. Timing circuit proposed for the

duration discrimination task. Description

of its operation in the text.

The comparison between the learnt standard s and the test t is done as follows: It is assumed that the

timer has learnt the standard duration s and its distribution of firing times is centred on the standard

time interval. It is also assumed that there are sensory neurons that detect the offset of the test stimulus

and activate directly the same "motor" neuron as the timer. By setting the input weights of the "motor"

neuron to sufficiently low values, it acts as a coincidence detector and fires only if two input spikes

arrive each from one of the two sources within a given time-window (Bugmann, 1997). As the time

window is essentially determined by the duration of the EPSPs generated by input spikes and is not

related to the duration of the test tone, it has to be assumed that our model has a constant threshold b':

| t - s*| < b'      (7)

To calculate the subject's response probabilities our timer is used as the noisy standard s*. The timer

has a distribution of firing times that allows test tones of various durations to be sometimes judged as

equal to the standard. Using equation (3) the probability that the timer fires between

 t1 = t-b'  and  t2=t+b' is calculated.  This gives the probability Py,t that the subject replies "yes" for a

test stimulus of duration t:

Py,t = M(m,n,t1) - M(m,n,t2)      (8)

This value is brought as close as possible to the experimental data by adjusting the parameters of the

model. For comparison, a best fit using equation (6) has also been attempted. The results are given in

table 1.
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Standard [ms] m n τ [sec] b Tot. Sq. Error

500 62 30 0.685 0.1945 0.0102

600 70 16 0.399 0.187 0.0018

700 63 29 0.9073 0.189 0.0057

Table 1. Values for the best fit parameters for the model |t-s*|<b.t. The total square error is the sum of

the squares of the differences between experimental probabilities of "yes" answer and those predicted by

the model, for the seven points shown in figure 6 for each experiment.

Standard [ms] m n τ [sec] b' [sec] Tot. Sq. Error

500 54 6 0.238 0.101 0.0177

600 83 24 0.5 0.115 0.0096

700 65 30 0.9598 0.1487 0.0033

Table 2. Values for the best fit parameters for the model |t-s*|<b'. Corresponding graphs shown in

figure 6.

The parameters giving the best fits for equation (7) are given in table 2. The quality of the fit is

comparable to that obtained with equation (6). The increase in the value of b' for longer standards

reflects the rather constant value of b in table 1. However, for consistency with the model in figure 7,

the values of b' and τ should not depend on the standard. Therefore a fit to the data has then been

attempted by using the same values of b' and τ for the three curves. After some trial and error, it was

found that b' = 0.115 sec and τ =0.5 sec gave good results. Finally it has been determined if the subjects

could have learned the standard by modifying only one parameter, either m or n. The results are given in

table 3. The fit for m variable is slightly better but probably not significantly, considering that

experimental data have errors. An indication for that is the significant better fit obtained with all models

to the data for s = 600 ms.

Standard [ms] m n τ [sec] b [sec] Tot. Sq. Error

500 83 | 43 29 | 15 0.5 0.115 0.067 | 0.033

600 83 | 51 24 | 15 0.5 0.115 0.010 | 0.022

700 83 | 66 19 | 15 0.5 0.115 0.053 | 0.043

Table 3. Values for the best fit parameters for the model |t-s*|<b' with b' and τ fixed. Two cases are

shown on the same table, m fixed or n fixed (in these two cases only one free parameter was adjusted).
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5. Concluding comments

Overall the results indicate that the model has the potential for explaining the experimental data. In

particular, it provides a well defined source for the variability of the subjects responses.

Regarding time learning, the fit to the data of this series of experiments equally well supports

several learning scenarios. However, the model provides an additional constraint in the form of a

relation between behaviour of the Weber curve and the time interval learning mechanisms. This can not

be exploited with these data, but data from other experiments may deserve re-examining in this light.

More theoretical work is also needed.

The value of b' of approximately 115 ms found for the window of coincidence detection lies

close to the upper limit of what is biologically realistic. It requires EPSPs of long duration, which can

be produced by inputs to distal synapses of pyramidal cells, possibly in cortical layer I.

The model is still very simple and can be made more realistic by setting some minimum

duration to the sustained firing (as in figure 2)(which may cause problems in learning accurately very

short time intervals (Jasselette, Lejeune and Wearden, 1990)). Another refinement is to consider

stochastic synapses at the "motor" neuron level (which may resemble the use of a stochastic threshold

b'*, as suggested in (Wearden, 1992)). Further, as the properties of the model depend on synaptic

characteristics, it may be worth testing it against known effects of drugs on timing (Meck, 1996).

The anatomical layout proposed in figure 7 is very tentative. It reflects the fact that prolonged

responses in sensory cortices are rarely longer than a few hundred milliseconds. In contrast, prolonged

firing in the frontal cortex lasts easily a few tenth of seconds (Fuster, 1980). As the time constants of

the best fits are all smaller than 1 second, it is therefore possible that the units in layer 1 of the model

correspond to normal sensory neurons. From masking experiments, it is known that their prolonged

firing is interrupted by subsequent sensory inputs (Rolls and Tovee, 1994). In the duration

discrimination experiment modelled here it was assumed that the tone onset is the input to the layer 1,

so that until a new tone is presented, there is no possible interruption of the firing in layer 1 other than

due to the stochasticity of the synapses. A prediction of the model is that parasitic tones starting during

the test tone may reinitialise the timer and increase the apparent duration of the standard.

An interesting feature of the proposed anatomical layout is the use of sensory circuits that are

already in use for processing sensory information. Hence, the biological timing function may be

obtained with a very small number of additional neurons.
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